Cooperative effects due to calcium binding by troponin and their consequences for contraction and relaxation of cardiac muscle under various conditions of mechanical loading.

نویسندگان

  • Izakov VYa
  • L B Katsnelson
  • F A Blyakhman
  • V S Markhasin
  • T F Shklyar
چکیده

A mathematical model for the regulation of mechanical activity in cardiac muscle has been developed based on a three-element rheological model of this muscle. The contractile element has been modeled taking into account the results of extensive mechanical tests that involved the recording of length-force and force-velocity relations and muscle responses to short-time deformations during various phases of the contraction-relaxation cycle. The best agreement between the experimental and the mathematical modeling results was obtained when a postulate stating two types of cooperativity to regulate the calcium binding by troponin was introduced into the model. Cooperativity of the first type is due to the dependence of the affinity of troponin C for Ca2+ on the concentration of myosin crossbridges in the vicinity of a given troponin C. Cooperativity of the second type assumes an increase in the affinity of a given troponin C for Ca2+ when the latter is bound by molecules neighboring troponin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ca exchange with troponin C and cardiac muscle dynamics

Controversy abounds in the cardiac muscle literature over the rate-limiting steps of cardiac muscle contraction and relaxation. However, the idea of a single biochemical mechanism being the all-inclusive rate-limiting step for cardiac muscle contraction and relaxation may be oversimplified. There is ample evidence that Ca2þ concentration and dynamics, intrinsic cross-bridge properties, and even...

متن کامل

Ca(2+) exchange with troponin C and cardiac muscle dynamics.

Controversy abounds in the cardiac muscle literature over the rate-limiting steps of cardiac muscle contraction and relaxation. However, the idea of a single biochemical mechanism being the all-inclusive rate-limiting step for cardiac muscle contraction and relaxation may be oversimplified. There is ample evidence that Ca(2+) concentration and dynamics, intrinsic cross-bridge properties, and ev...

متن کامل

p21-activated kinase increases the calcium sensitivity of rat triton-skinned cardiac muscle fiber bundles via a mechanism potentially involving novel phosphorylation of troponin I.

Phosphorylation of myofilament proteins by kinases such as cAMP-dependent protein kinase and protein kinase C has been shown to lead to altered thin-filament protein-protein interactions and modulation of cardiac function in vitro. In the present study, we report that a small GTPase-dependent kinase, p21-activated kinase (PAK), increases the calcium sensitivity of Triton-skinned cardiac muscle ...

متن کامل

Cardiac troponin I gene knockout: a mouse model of myocardial troponin I deficiency.

Troponin I is a subunit of the thin filament-associated troponin-tropomyosin complex involved in calcium regulation of skeletal and cardiac muscle contraction. We deleted the cardiac isoform of troponin I by using gene targeting in murine embryonic stem cells to determine the developmental and physiological effects of the absence of this regulatory protein. Mice lacking cardiac troponin I were ...

متن کامل

Numerical and Experimental Study on Ratcheting Behavior of Plates with Circular Cutouts under Cyclic Axial Loading

In this paper, accumulation of plastic deformation of AISI 1045 steel plates with circular cutouts under cyclic axial loading is studied. Loading was applied under force-control conditions. Experimental tests were performed using a Zwick/Roell servo hydraulic machine. Under force-control loading with nonzero mean force, plastic strain was accumulated in continuous cycles called ratcheting. Nume...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 69 5  شماره 

صفحات  -

تاریخ انتشار 1991